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Abstract The classical Weissinger’s L-method is generalized to the lifting problem for steadily advancing curved
wings subject to the wing-in-ground (WIG) effect above a large body of water in subsonic flow, and the free surface
defines the boundary between the air and water. Unlike the traditional analysis of the lifting problem, the essential
techniques focus on finding the three-dimensional free surface Green’s function generated by the isolated horseshoe
vortex in the upper layer of the stratified fluid where the air is regarded as weakly compressible and the water is
incompressible. The numerical calculation is implemented using Weissinger’s L-method. Finally, the effects of the
curved geometry on WIG effect in the vicinity of a free surface in subsonic flow are discussed. Extensive numerical
examples are carried out to show the lift properties for three-dimensional swept and dihedral wings operating in
the vicinity of a free surface as a function of the sweep or dihedral angle for different clearance-to-chord ratios and
Mach numbers. Interestingly, for high Froude numbers, the free surface effectively becomes rigid, and it can safely
be treated as a solid surface.

Keywords Curved wing · Free surface · Green’s function · Stratified fluid · Weissinger’s L-method · WIG effect

1 Introduction

Although the ship is one of the oldest forms of transportation, it is still subject to constant evolution. The high cost
of fuel, coupled with increasing manufacturing and operating costs, has enabled the pursuit of high-performance
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unorthodox maritime vehicles. In recent years, there have been worldwide efforts to develop new conceptual vehicles
focused on increasing the efficiency and economy of shipping operations [1]. The viscous and wave-making drags
in water have become an obstacle to increasing ship speed without dramatically increasing the needed power, and
then the excess power must be consumed. For the purpose of avoiding the aforementioned obstacle, wing-in-ground
(WIG) effect crafts, which are lifted above the water surface by aerodynamic force, have become popular.

The study of the WIG effect was initiated in the early twentieth century in connection with the takeoff and landing
of aircraft [2]. Research on the WIG effect has captured the attention of fluid dynamicists, applied mathematicians,
computational scientists, and engineers [3, pp. 680]. This effect has already been studied by many other authors, but
mainly with respect to vehicles moving near rigid walls. A well-known result is the increase in lift as the distance
from the wing to the ground decreases. Even if it can be expected that this result will qualitatively hold also for
liquid surfaces, a quantitative evaluation would be worthwhile together with an investigation of new phenomena
possibly arising. Deformations of the free surface due to applied pressure loads may result in changes in aerodynamic
performance.

Among the research on the lifting problem for WIG effect, experimental investigation still remains a powerful
tool for predicting the aerodynamic parameters for a wing operating in proximity to a rigid wall. The flow field
characteristics over the WIG effect were studied experimentally in a low-speed wind tunnel, and the aerodynamic
parameters were obtained for different gap ratios [4]. The instantaneous and time-averaged flow properties of the
wake region of the WIG effect with a finite trailing edge were identified. Furthermore, the generation, evolution, and
breakdown of the wing edge vortex were studied experimentally [5]. The flow performances over the WIG effect
were investigated in a low-speed wind tunnel with moving ground simulation for different attack angles and gap
ratios. It was found that the geometry of the airfoil also had a strong influence on the aerodynamic characteristics [6].

Many numerical and theoretical studies on WIG effect in proximity to a solid surface have also been carried out.
The unsteady aerodynamic forces acting on an oscillating wing in the vicinity of distant flat ground was studied
using matched asymptotic expansions (MAEs) [7]. The method of MAEs was applied to the lifting problem for a
wing in extreme ground effect. The general lifting surface problem was represented by a source-sink distribution on
the upper surface of the wing and the wake. The results agree well with the numerical results from the lifting surface
theory [8]. The boundary element method was used to investigate the aerodynamic characteristics of a wing flying
over a rail and in a channel, and the method was determined to be valid based on comparisons with experimental
results [9,10]. A numerical integration method was developed for the lifting surface and the Prandtl lifting line
equation, and an image method was utilized to deal with the influence of the ground effect [11].

The development of computational fluid dynamics (CFD) spurred an interest in using this technique to deal with
the lifting problem for WIG effect. Numerical analysis was performed to investigate the aerodynamic characteristics
and static height stability of the endplate on the WIG effect. The Reynolds averaged Navier–Stokes equations were
solved to predict the aerodynamic characteristics of the wing in ground effect [12]. Numerical simulations were
performed to study the flow field about the oscillating airfoil in proximity to the ground. Inviscid and viscous
turbulent flow simulations were carried out [13].

Although many theoretical and numerical studies have been conducted on the WIG effect in the presence of a rigid
wall [4–13] showing that the lift force increases as the flight altitude decreases, very little attention has been paid
to the ground effect lift performance above a free surface. Generally, the surface beneath a WIG effect craft, which
is water, is assumed to be a rigid wall. Nevertheless, even purely static considerations show that the water surface
should deform beneath the WIG effect craft, resulting in the variation of aerodynamic coefficients [14]. A wing
moving above a free surface can generate water waves that propagate outward to infinity, complicating numerical
and theoretical analysis. A very large water volume must be meshed if a numerical method is employed to solve the
problem. It seems that only a few attempts have been made to investigate the WIG effect problem in the presence
of a free surface, e.g., [15–18]. The panel method and Rankine source method were employed respectively to study
the free surface effect on two-dimensional and three-dimensional WIG effects [15]. Three-dimensional free surface
deformation due to the presence of the WIG effect was considered from a numerical position by CFD. The numerical
results show that the tip vortices lead to free surface deformation [16]. In recent publications, the lift performance
of the WIG effect in the presence of a free surface has been studied using Prandtl lifting line theory [17,18].
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Fig. 1 Schematic figure of wing replaced by a sequence of horseshoe vortex elements in three-dimensional coordinate system

Usually, the velocity of the WIG effect craft ranges from 100 to 200 m/s and the Mach number is correspondingly
from 0.3 to 0.6 in that case. When the Mach number is larger than 0.3, the compressibility of the air should be
taken into consideration, and that flow regime can be defined as the subsonic flow. Thus, it is essential to analyze
the compressibility effect on the lifting problem for WIG effect. For subsonic flow, density effects are important,
but no shock wave appears.

The key techniques of Weissinger’s L-method lie in dividing the thin wing planform into a finite number of
elements and putting a horseshoe vortex on each of them, as shown in Fig. 1. The bound vortex is placed on the
quarter-point line of the element, and the free vortices consist of two semifinite vortex filaments stretching backwards
to infinity, the collocation point is at the three-quarter chord position measured from the leading edge. The strength
of the vortex filament Γ is assumed to be constant for the horseshoe vortex. The kinematic flow condition—that
zero normal flow passes across the wing’s solid surface—should be satisfied at the collocation point [19].

The left and right wing halves around the longitudinal axis can deflect upward or downward, yielding a
V-attitude of the wing configuration [20]. It is determined that the dihedral angle is positive as the wing halves
deflect upward. A dihedral angle is applied by birds to keep good yaw stability. It can also affect the stability of an
airfoil significantly and improve the stability of the airplane [21]. The doublet-lattice method was used to calculate
the lift of the nonplanar wings including the one with a dihedral angle in proximity to a rigid wall based on the
image method. It was found that the dihedral angle had a significant impact on the aerodynamic properties of the
airplane [22].

A swept wing is a wing planform with a wing root to wingtip direction angled beyond (forward or afterward)
the spanwise axis. The angle of sweep that characterizes a swept wing is conventionally measured along the one-
quarter chord line [19]. A swept wing can efficiently decay the compressibility effect in the subsonic regime. Thus
the research on the swept effect is of practical importance for a high-speed aircraft.

The present article is organized as follows. In Sect. 2, the governing equations in air and water are given, and
the fully nonlinear kinematic and dynamic free surface boundary conditions are deduced. In Sect. 3, the nonlinear
governing equation in air is linearized using a perturbation technique, and this approach is also utilized to linearize the
nonlinear kinematic and dynamic free surface boundary conditions. Section 4 demonstrates the three-dimensional
free surface Green’s function for a horseshoe vortex in stratified fluid where the air is considered to be compressible
and the water is incompressible. In Sects. 5 and 6, we analyze the cases of the dihedral wing and the swept wing
operating close to the free surface. In Sect. 7, numerical results presented show the effects of the dihedral and swept
geometry as well as the free surface effect on the aerodynamic properties of a wing in the vicinity of a free surface.
In Sect. 8, a short conclusion is presented.
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2 Governing equations and boundary conditions

In the present work, there are two layers of fluids, the air and the water. The air is treated as the weakly compressible;
the water is incompressible. Throughout the article, the fluid is assumed to be inviscid, and the surface tension effect
is neglected. Consider a horseshoe vortex element with a strength of Γ at a distance of h above the undisturbed
free surface moving at a constant speed U . Thus, both air and water are disturbed. A three-dimensional Cartesian
coordinate system Oxyz is attached to the horseshoe vortex. The undisturbed free surface is on the Oxy plane and
the Oz axis is positive upward (Fig. 2). Taking the horseshoe vortex as the frame of reference, the air and water
move steadily at a velocity of U in the positive Ox direction.

2.1 Governing equations

Let U be the free stream speed in the positive x direction, as shown in Fig. 2. In the subsonic regime, U is always
less than the speed of the sound propagating in air, Ua0. An important parameter in compressible flows is the Mach
number, Ma , which is defined as Ma = U/Ua0.

Based on the assumption that the fluid is inviscid and barotropic, the governing equation for a compressible fluid
in steady state can be written as [23, pp. 27]

∇2ϕa − 1

U 2
a0

qa · ∇ q2
a

2
= 0, (1)

where ϕa denotes the perturbation velocity potential in air and qa is the perturbation velocity component vector in
air, which is defined as

qa = ∇ϕa = ua i + vaj + wak, (2)

where ua , va , and wa denote the perturbation velocity components in air in the Ox, Oy, and Oz directions (Fig. 2).
However, the speed of a sound wave propagating in water is much greater than in air, and it can reach up to

1,400 m/s. This makes it possible to use a velocity potential whose gradient gives the fluid velocity components.
The perturbation velocity potential must satisfy Laplace’s equation everywhere in water,

∇2ϕw = 0, (3)

where the perturbation velocity potential in water is expressed using ϕw.

2.2 Boundary conditions

Taking the horseshoe vortex as the frame of reference, we can assume that the air and water can be seen as moving
at a constant speed U (Fig. 2).

It is supposed that the free surface at infinity is undisturbed, and the pressure is the atmospheric pressure, p0.
Based on the irrotational and inviscid Bernoulli equation in incompressible and compressible flows, we obtain
[24, Chap. 2]

pa

ρa
+ gζ + 1

2
|U i + ∇ϕa |2 = p0

ρa
+ 1

2
U 2 (4)

and
pw

ρw

+ gζ + 1

2
|U i + ∇ϕw|2 = pw

ρw

+ 1

2
U 2, (5)

where pa and pw denote the pressure on the interface in air and water and ζ denotes the free surface elevation. Due
to the continuity in pressure on the interface, pa should be equal to pw. Then, by eliminating p0, we obtain the
fully nonlinear dynamic free surface condition
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Fig. 2 Schematic illustration of flow past a horseshoe vortex over
a free surface

Fig. 3 Schematic figure of the foil operating over a free surface
and its generated water waves
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+ 1
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(
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(
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]

on z = ζ (x, y) . (6)

Suppose that the free surface equation is

F = z − ζ (x, y) = 0. (7)

By requiring that the substantial derivative of the quantity of z − ζ(x, y) vanishes on the mean free surface
[25, pp. 239], we obtain the kinematic boundary condition for the free surface:

∂ϕw

∂z
=

(
U + ∂ϕw

∂x

)
∂ζ

∂x
+ ∂ϕw

∂y

∂ζ

∂y
on z = ζ (x, y) (8)

and
∂ϕa

∂z
=

(
U + ∂ϕa

∂x

)
∂ζ

∂x
+ ∂ϕa

∂y

∂ζ

∂y
on z = ζ (x, y) . (9)

In what follows, the characteristic nondimensional parameter is the clearance Froude number, which is defined
as

Frh = U√
gh

, (10)

where h is the clearance between the foil and the undisturbed free surface (Fig. 3).

3 Linearization procedure

3.1 Justification of linearization

In this study, it is assumed that the wing operating above the free surface is sufficiently thin. Thus we have
|∇ϕa |

U
�1. (11)

Equation (11) indicates that the ratio of the perturbation velocity to the velocity of the incoming flow is sufficiently
small, so the nonlinear governing equation in (1) can be linearized reasonably [23, Chap. 2].

For the water waves, if the velocity of the water wave propagation is given, the length of the water wave can be
obtained [25, pp. 240]:

λ = 2πU 2

g
, (12)

123



114 H. Liang et al.

where λ represents the length of the generated water wave (Fig. 3). Thus, the length of the water wave is on the
order of tens of kilometers. However, the magnitude order of the wave amplitude is on the order of meters, and then
we have
A

λ
∼ 10−3�1, (13)

where A denotes the amplitude of the free surface wave, as shown in Fig. 3. From (13) it can be concluded that
the generated water waves have a feature with macro amplitude; in addition, Scullen and Tuck [26] found that free
surface deformation due to the passage of a pressure distribution, such as would be produced by a WIG effect craft
or hovercraft, has the shape of a small-amplitude disturbance. Therefore, the linearized free surface condition is
acceptable. We introduce a small parameter δ1, which demonstrates the air–water interface free surface:

δ1 = A

λ
. (14)

On the basis of the thin wing assumption, the ratio

δ2 = t

h
(15)

should also be small, where t stands for half of the maximum thickness of the foil (Fig. 3).
We carry out the linearization procedure using the regular perturbation technique in which the sufficiently small

parameters δ1 and δ2 are chosen. The free surface deformation induced by the foil has the same order as δ1, which
is verified in Appendix 1. Equations (14) and (15) allow the velocity potentials in air and water as well as the free
surface deformation to be expanded in a power series in δ1 and δ2 as follows:

ϕa =
∞∑

i=1

δi
1ϕ

(i)
a1 +

∞∑
i=1

δi
2ϕ

(i)
a2 , (16)

ϕw =
∞∑

i=1

δi
1ϕ

(i)
w , (17)

and

ζ =
∞∑

i=1

δi
1ζ

(i), (18)

where ϕ
(i)
a1 , ϕ(i)

w , and ζ (i), i = 1, 2, . . ., denote the velocity potential in air and water and the free surface deformation

in the form of the perturbation expansion function of the i th order with respect to δ1, and ϕ
(i)
a2 denotes the velocity

potential in air in the form of the perturbation expansion function of the i th order with respect to δ2.

3.2 Linearization of governing equations

The governing equation in water is the Laplace equation as shown in Eq. (3) which shows linearity. Thus there
is no need to conduct the linearization procedure. However, the governing equation in air is nonlinear, and thus
the linearization procedure is necessary. We conduct the linearization procedure using a perturbation technique in
which δ1 and δ2 are the small perturbation parameters, and they characterize some features of the interface between
air and water and the thin foil.

Inserting Eq. (16) into Eq. (1), we can obtain a grouping like powers of δ1 and δ2, and a series of equations for
each order of the solution can also be obtained. For the first-order term with respect to δ1 and δ2, the governing
equation in the form of perturbation expansions can be expressed as

O(δ1) : ∇2ϕ
(1)
a2 − M2

a
∂2

∂x2 ϕ
(1)
a2 = 0 (19a)
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and

O(δ2) : ∇2ϕ
(1)
a2 − M2

a
∂2

∂x2 ϕ
(1)
a2 = 0. (19b)

Then, the governing equation in air can be expressed as

∇2ϕ(1)
a − M2

a
∂2

∂x2 ϕ(1)
a = 0. (20)

Equation (20) is the Prandtl–Glauert equation. We can introduce the scaling transformation

X = x/β, Y = y, Z = z, (21)

where

β =
√

1 − M2
a . (22)

Then Eq. (21) can be written as

∂2ϕ
(1)
a

∂ X2 + ∂2ϕ
(1)
a

∂Y 2 + ∂2ϕ
(1)
a

∂ Z2 = 0. (23)

The scaling transformation has stretched the x coordinate by 1/β. After carrying out the scaling transformation,
the elliptic partial differential equation (20) will be transformed into the Laplace equation. Suppose that the angle
of attack of the wing is equal to α0 in the original coordinate system, nevertheless it will be 1/β times the value of
angle of attack in transformed coordinate system [24, Chap. 15]:

α = 1

β
α0. (24)

3.3 Linearization of free surface boundary condition equations

The approach that we use to linearize the kinematic and dynamic free surface boundary conditions is also the regular
perturbation method in which the sufficiently small parameters δ1 and δ2 describing the interface between the water
and air and the foil are selected as shown in Eqs. (14) and (15).

The perturbed velocity potentials in air and water can be expanded using Taylor series:

ϕa (x, y, ζ ) = ϕa (x, y, 0) + ζ (x, y)
∂ϕa (x, y, 0)

∂z
+ [ζ (x, y)]2

2

∂2ϕa (x, y, 0)

∂z2 + · · · (25)

and

ϕw (x, y, ζ ) = ϕw (x, y, 0) + ζ (x, y)
∂ϕw (x, y, 0)

∂z
+ [ζ (x, y)]2

2

∂2ϕw (x, y, 0)

∂z2 + · · ·. (26)

By substituting Eqs. (17), (18), and (26) into the kinematic condition (8) in the water region, we can obtain a
series of expansions with powers of δ1. Since all the δn

1 dependent terms must be equal. Thus, the perturbation
expansion functions of the first-order with respect to δ1 can be obtained:

O(δ1) : ∂ϕ
(1)
w

∂z
= U

∂ζ (1)

∂x
at z = 0. (27)

Similarly, substituting Eqs. (17), (18) and (25) into the kinematic condition (9) in the air region, we obtain the
perturbation expansion functions of the first order with respect to δ1 and δ2:

O(δ1) : ∂ϕ
(1)
a1

∂z
= U

∂ζ (1)

∂x
at z = 0 (28)

and

O(δ2) : ∂ϕ
(1)
a2

∂z
= 0 at z = 0. (29)
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Combining with Eqs. (27) and (28), we obtain

∂ϕ
(1)
a1

∂z
= ∂ϕ

(1)
w

∂z
at z = 0. (30)

We can conclude from Eqs. (29) and (30) that the velocity potential in air can be decomposed into two parts.
One part satisfies the boundary condition of the rigid wall, which requires no flow crossing the boundary, as shown
by Eq. (29), and the other one satisfies the condition prescribing the continuity in vertical velocity, as shown by
Eq. (30).

Inserting Eqs. (16), (17), (18), (25), and (26) into the fully nonlinear dynamic free surface condition (6), we
obtain the linearized dynamic free surface condition. Substituting Eqs. (27) and (28) into the linearized dynamic
free surface condition and eliminating ζ (1) yields

O(δ1) : ρa

[
g
∂ϕ

(1)
a1

∂z
+ U 2 ∂2ϕ

(1)
a1

∂x2

]
= ρw

[
g
∂ϕ

(1)
w

∂z
+ U 2 ∂2ϕ

(1)
w

∂x2

]
at z = 0 (31)

and

O(δ2) : ∂2ϕ
(1)
a2

∂x2 = 0 at z = 0. (32)

Neglecting the superscripts in Eqs. (29)–(32) and consolidating ϕa1 and ϕa2 into ϕa , we can rewrite the free
surface boundary conditions as

∂ϕa

∂z
= ∂ϕw

∂z
at z = 0 (33)

and

ρa

(
g
∂ϕa

∂z
+ U 2 ∂2ϕa

∂x2

)
= ρw

(
g
∂ϕw

∂z
+ U 2 ∂2ϕw

∂x2

)
at z = 0. (34)

Equations (33) and (34) are in good agreement with the free surface boundary conditions for stratified fluid [27].
In Eqs. (33) and (34), ϕa can be composed of three parts: the velocity potential induced by the horseshoe vortex ϕh0,
the image horseshoe vortex ϕh1 beneath the free surface, and the velocity potential due to the free surface disturbance
ϕ f . Equation (29) indicates that the image horseshoe vortex has the same strength but the opposite sign. Thus, the
sum of the vertical velocity induced by the horseshoe and its image at the mean free surface equals zero. Strictly
speaking, the velocity potential of a three-dimensional vortex filament does not exist. The velocity potentials of the
horseshoe vortex and its image can be replaced by the induced velocity components, and the induced velocities of
these components can be computed using the Biot–Savart law. Based on the potential flow theory, the kinematic
and dynamic boundary conditions (33) and (34) can be rewritten as

∂ϕ f

∂z
= ∂ϕw

∂z
(35)

and

a

(
∂u

∂x
+ ∂u′

∂x
+ k

∂ϕ f

∂z
+ ∂2ϕ f

∂x2

)
= k

∂ϕw

∂z
+ ∂2ϕw

∂x2 , (36)

where a is the density ratio of air to water and k, which denotes the wave number, equals g/U 2. In addition, u and
u′ denote the velocity components induced by the horseshoe vortex and the image in the Ox direction, respectively.

4 Green’s function for a horseshoe vortex operating above a free surface

In Eqs. (35) and (36), the perturbation velocity induced by the horseshoe vortex in the Ox and Oz directions should
be calculated. The horseshoe vortex is located in the air; thus the effect of compressibility should be taken into
consideration. By applying the law of Biot–Savart [25], the induced velocity components can be obtained (the
detailed derivation can be found in Appendix 2):
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u = Γ

4π2

∞∫
0

π/2∫
−π/2

i

sin θ
exp {m (z − h) + im [x cos θ/β + (y − y1n) sin θ]} dθdm

− Γ

4π2

∞∫
0

π/2∫
−π/2

i

sin θ
exp {m (z − h) + im [x cos θ/β + (y − y2n) sin θ ]} dθdm,

(37a)

u′ = Γ

4π2

∞∫
0

π/2∫
−π/2

i

sin θ
exp {−m (z + h) + im [x cos θ/β + (y − y1n) sin θ]} dθdm

− Γ

4π2

∞∫
0

π/2∫
−π/2

i

sin θ
exp {−m (z + h) + im [x cos θ/β + (y − y2n) sin θ ]} dθdm,

(37b)

and

w = Γ

4π2

∞∫
0

π/2∫
−π/2

(tan θ + cot θ) exp {m (z − h) + im [x cos θ/β + (y − y1n) sin θ ]} dθdm

− Γ

4π2

∞∫
0

π/2∫
−π/2

(tan θ + cot θ) exp {m (z − h) + im [x cos θ/β + (y − y2n) sin θ ]} dθdm,

(38a)

w′ = − Γ

4π2

∞∫
0

π/2∫
−π/2

(tan θ + cot θ) exp {−m (z + h) + im [x cos θ/β + (y − y1n) sin θ ]} dθdm

+ Γ

4π2

∞∫
0

π/2∫
−π/2

(tan θ + cot θ) exp {−m (z + h) + im [x cos θ/β + (y − y2n) sin θ ]} dθdm,

(38b)

where y1n and y2n represent the coordinates of the two endpoints of bound line vortex as shown in Fig. 2, and they
should satisfy y1n < y2n . In addition, the Fourier-type integration in the form of the inverse of the distance was
used [28, Chap. 9]:

1

r
= 1

π

∞∫
0

π/2∫
−π/2

exp {m (z − h) + im [(x − ξ) cos θ + (y − η) sin θ ]} dθdm, (39)

where

r =
√

(x − ξ)2 + (x − ξ)2 + (z − h)2. (40)

For the purpose of satisfying the governing equations, which are shown by Eqs. (19a, 19b), and (20), Eq. (39)
can be rewritten in the form

1

R
= 1

π

∞∫
0

π/2∫
−π/2

exp {m (z − h) + im [(x − ξ) cos θ/β + (y − η) sin θ ]} dθdm, (41)

where

R =
√

(x − ξ)2/β2 + (x − ξ)2 + (z − h)2. (42)
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The velocity potential in water should satisfy the Laplace equation (3). Thus, the expression of ϕw can be assumed
to be in the form

ϕw = ϕw (x, y, z)

= Γ

2π2

∞∫
0

π/2∫
−π/2

A (m, θ) exp {m (z − h) + im [x cos θ + (y − y1n) sin θ ]} dθdm

− Γ

2π2

∞∫
0

π/2∫
−π/2

A (m, θ) exp {m (z − h) + im [x cos θ + (y − y2n) sin θ]} dθdm. (43)

However, the velocity potential in air satisfies the governing equation (20). Thus, the expression of ϕ f should
satisfy the governing equation (20), and it can be expressed as

ϕ f = ϕ f (x/β, y, z)

= Γ

2π2

∞∫
0

π/2∫
−π/2

B (m, θ) exp {−m (z + h) + im [x cos θ/β + (y − y1n) sin θ ]} dθdm

− Γ

2π2

∞∫
0

π/2∫
−π/2

B (m, θ) exp {−m (z + h) + im [x cos θ/β + (y − y2n) sin θ]} dθdm. (44)

Substituting Eqs. (37a,37b), (38a,38b), (43), and (44) into the kinematic and dynamic boundary conditions Eqs.
(35) and (36), we obtain the expressions of the perturbation velocity potential in water and the velocity potential
increment owing to the presence of a free surface:

ϕw = − Γ

2π2

∞∫
0

π/2∫
−π/2

aβ cos θ exp {m (z − h) + im [x cos θ + (y − y1n) sin θ ]}
sin θ

(−aβ2k − am cos2 θ + β2k − m cos2 θ
) dθdm

+ Γ

2π2

∞∫
0

π/2∫
−π/2

−aβ cos θ exp {m (z − h) + im [x cos θ + (y − y2n) sin θ]}
sin θ

(−aβ2k − am cos2 θ + β2k − m cos2 θ
) dθdm. (45)

and

ϕ f = Γ

2π2

∞∫
0

π/2∫
−π/2

aβ cos θ exp {−m (z + h) + im [x cos θ/β + (y − y1n) sin θ ]}
sin θ

(−aβ2k − am cos2 θ + β2k − m cos2 θ
) dθdm

− Γ

2π2

∞∫
0

π/2∫
−π/2

aβ cos θ exp {−m (z + h) + im [x cos θ/β + (y − y2n) sin θ]}
sin θ

(−aβ2k − am cos2 θ + β2k − m cos2 θ
) dθdm. (46)

Henceforth, in this article, the real part will be assumed to apply in all the complex expressions, and the symbol
“Re” will be omitted. Evaluating the derivative of ϕ f with respect to z, we obtain the velocity of downwash induced
by the free surface disturbance:
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∂ϕ f

∂z
= − Γ

4π2

∞∫
0

π/2∫
−π/2

aβ exp {−m (z + h) + im [x cos θ/β + (y − y1n) sin θ ]}
(1 + a) sin θ cos θ

dθdm

+ Γ

4π2

∞∫
0

π/2∫
−π/2

aβ exp {−m (z + h) + im [x cos θ/β + (y − y2n) sin θ ]}
(1 + a) sin θ cos θ

dθdm

− Γ

2π2

∞∫
0

π/2∫
−π/2

a (1 − a) β3k

(1 + a)2 sin θ cos3 θ
· exp {−m (z + h) + im [x cos θ/β + (y − y1n) sin θ ]}

m − 1−a
1+a β2k sec2 θ

dθdm

+ Γ

2π2

∞∫
0

π/2∫
−π/2

a (1 − a) β3k

(1 + a)2 sin θ cos3 θ
· exp {−m (z + h) + im [x cos θ/β + (y − y2n) sin θ ]}

m − 1−a
1+a β2k sec2 θ

dθdm.

(47)

In Eq. (47), the image term can be integrated directly using a numerical integration method, such as the Gaussian
quadrature method. However, the last two terms contain improper integrals with singularities as

m − 1 − a

1 + a
β2k sec2 θ = 0, (48)

and evaluating this kind of double integral directly is a rather time-consuming numerical task. For the purpose of
obtaining the value of the integration quickly but precisely, we can rewrite the last two terms in the forms eλE1(λ),
which can be found in [29]

∂ϕ f

∂z
= − Γ

4π2

∞∫
0

π/2∫
−π/2

aβ exp {−m (z + h) + im [x cos θ/β + (y − y1n) sin θ ]}
(1 + a) sin θ cos θ

dθdm

+ Γ

4π2

∞∫
0

π/2∫
−π/2

aβ exp {−m (z + h) + im [x cos θ/β + (y − y2n) sin θ ]}
(1 + a) sin θ cos θ

dθdm

− Γ

2π2

π/2∫
−π/2

a (1 − a) β3k

(1 + a)2 sin θ cos3 θ

[
eλ1 E1 (λ1) − eλ2 E1 (λ2) + 2π iH(x)

(
eλ1 − eλ2

)]
dθ,

(49)

where the Heaviside function H(x) is equal to 1 when x is positive and equal to 0 when x is less than or equal
to 0. In addition, λi is

λi = β2k sec2 θ
1 − a

1 + a
{− (z + h) + i [x cos θ/β + (y − yin) sin θ ]} , i = 1, 2. (50)

The exponential integral function E1(x) is

E1(x) =
∞∫

x

e−t

t
dt . (51)

The expression eλE1(λ) in Eq. (49) can be evaluated using the Padé approximation [30], which can accurately
and efficiently convert the improper integral to a polynomial, reducing the complexity and computing time [26].
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Fig. 4 Dihedral wing over
free surface at clearance of h
measured from central plan

y 

z

Λ

Undisturbed free surface 

h

The dihedral wing

5 Dihedral effect on WIG effect in vicinity of free surface

The dihedral angle can determine the dihedral effect, and the dihedral effect is a critical factor in the stability of an
aircraft about the roll axis [21]. It is also pertinent to the nature of an aircraft’s roll oscillation and to maneuverability
about the roll axis.

The WIG effect with a dihedral angle close to a solid surface is discussed in [22]. Thus there is no longer any
need to represent it. We simply study the WIG effect with dihedral in proximity to a free surface. We assume a
steady motion of a thin three-dimensional wing with dihedral at the clearance of h over the air–water interface free
surface, as shown in Fig. 4.

For a wing with dihedral, the function of the one-quarter chord f (y) with respect to y in the original coordinate
system can be expressed as

f (y) = tan Λ · |y| + h, (52)

where Λ is a dihedral angle (Fig. 4). However, in the transformed coordinate system, the one-quarter chord function
becomes

f (Y ) = tan Λ · |Y | + h. (53)

Due to the deflection of the one-quarter chord line, the perturbation velocity components induced by the horseshoe
vortex on the nth element of the dihedral wing in the Ox and Oz directions can be obtained:

un = Γn

4π2

∞∫
0

π/2∫
−π/2

i

sin θ
exp {m [z − f (y1n)] + im [x cos θ/β + (y − y1n) sin θ ]} dθdm

− Γn

4π2

∞∫
0

π/2∫
−π/2

i

sin θ
exp {m [z − f (y2n)] + im [x cos θ/β + (y − y2n) sin θ ]} dθdm,

(54a)

u′
n = Γn

4π2

∞∫
0

π/2∫
−π/2

i

sin θ
exp {− [z + f (y1n)] + im [x cos θ/β + (y − y1n) sin θ ]} dθdm

− Γn

4π2

∞∫
0

π/2∫
−π/2

i

sin θ
exp {− [z + f (y2n)] + im [x cos θ/β + (y − y2n) sin θ ]} dθdm,

(54b)
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and

wn = Γn

4π2

∞∫
0

π/2∫
−π/2

(tan θ + cot θ) exp {m [z − f (y1n)] + im [x cos θ/β + (y − y1n) sin θ ]} dθdm

− Γn

4π2

∞∫
0

π/2∫
−π/2

(tan θ + cot θ) exp {m [z − f (y2n)] + im [x cos θ/β + (y − y2n) sin θ ]} dθdm,

(55a)

w′
n = − Γn

4π2

∞∫
0

π/2∫
−π/2

(tan θ + cot θ) exp {− [z + f (y1n)] + im [x cos θ/β + (y − y1n) sin θ]} dθdm

+ Γn

4π2

∞∫
0

π/2∫
−π/2

(tan θ + cot θ) exp {− [z + f (y2n)] + im [x cos θ/β + (y − y2n) sin θ ]} dθdm,

(55b)

where Γn is the circulation of the horseshoe vortex on the nth element. Evaluating the derivative of Eq. (49) with
respect to z at the collocation point, we obtain the velocity of the downwash on the collocation point of the mth
element, which is induced by the free surface disturbance terms with respect to the horseshoe vortex on the nth
element:

w
m,n
s f = ∂ϕ f

∂z

∣∣∣∣
z= f (ym),y=ym ,x=βc/2

= − Γ

2π2

∞∫
0

π/2∫
−π/2

aβ exp {−m [ f (ym) − f (y1n)] + im [c cos θ/2 + (y − y1n) sin θ ]}
(1 + a) sin θ cos θ

dθdm

+ Γ

2π2

∞∫
0

π/2∫
−π/2

aβ exp {−m [ f (ym) − f (y2n)] + im [c cos θ/2 + (y − y2n) sin θ ]}
(1 + a) sin θ cos θ

dθdm

− Γ

2π2

π/2∫
−π/2

a (1 − a) β3k

(1 + a)2 sin θ cos3 θ

[
eλ1 E1 (λ1) − eλ2 E1 (λ2) + 2π i

(
eλ1 − eλ2

)]
dθ,

(56)

where w
m,n
s f denotes the velocity of downwash on the collocation point on the mth element, which is induced by

the free surface disturbance terms with respect to the horseshoe vortex on the nth element, and ym is the coordinate
of the collocation point on the mth element, as shown in Fig. 1, and

λi = β2k sec2 θ
1 − a

1 + a
{− [ f (ym) − f (yin)] + i [c cos θ/2 + (y − yin) sin θ ]} , i = 1, 2. (57)

Due to the presence of the free surface, the induced velocity in the direction of the movement exists. We can
calculate it by taking the derivative of Eq. (49) with respect to x :

um,n
f = ∂ϕ f

∂x

∣∣∣∣
z= f (ym),y=ym ,x=0

= Γn

4π2

∞∫
0

π/2∫
−π/2

2ia

(1 + a) sin θ
exp {−m [z + f (y1n)] + im (y − y1n) sin θ} dθdm

− Γn

4π2

∞∫
0

π/2∫
−π/2

2ia

(1 + a) sin θ
exp {−m [z + f (y1n)] + im (y − y1n) sin θ} dθdm
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Fig. 5 Schematic of swept
wing in two-dimensional
coordinate system

y 

x 

Θ

+ Γ

2π2

π/2∫
−π/2

ia (1 − a) β2k

(1 + a)2 sin θ cos2 θ

[
eλ1 E1 (λ1) − eλ2 E1 (λ2) + 2π i

(
eλ1 − eλ2

)]
dθ, (58)

where um,n
f denotes the perturbation velocity on the mth element in the direction of the incoming flow generated

by the disturbance of the free surface induced by the horseshoe vortex on the nth element, and

λi = β2k sec2 θ
1 − a

1 + a
{− [ f (ym) − f (yin)] + i (y − yin) sin θ} , i = 1, 2. (59)

6 Swept effect on WIG effect in proximity to a free surface

In the subsonic regime, the swept effect is of practical importance. It can delay the onset of the compressibility
effect. We assume a steady motion of a thin flat three-dimensional swept wing at a clearance of h over an undisturbed
free surface and the angle of sweep is Λ (Fig. 5).

For the wing with sweep, the function of one-quarter chord g(y) with respect to y in the original coordinate
system is

g(y) = tan Θ · |y| , (60)

where Θ is the sweep angle, taken to be positive for afterward deflection (Fig. 5). However, the function of g(y)

will be changed because of the stretching of the x coordinate caused by the scaling transformation. The slope of
G(y) in the transformed coordinate system is 1/β times the value of the slope in the original coordinate system:

G(Y ) = tan Θ

β
· |Y | . (61)

Due to the curvature of the one-quarter chord line, the perturbation velocity components induced by the horseshoe
vortex on the swept wing in the Ox and Oz directions can be expressed as

un = Γn

4π2

∞∫
0

π/2∫
−π/2

i

sin θ
exp (m (z − h) + im {[x/β − G (y1n)] cos θ + (y − y1n) sin θ}) dθdm

− Γn

4π2

∞∫
0

π/2∫
−π/2

i

sin θ
exp (m (z − h) + im {[x/β − G (y2n)] cos θ + (y − y2n) sin θ}) dθdm, (62a)

u′
n = Γn

4π2

∞∫
0

π/2∫
−π/2

i

sin θ
exp (−m (z + h) + im {[x/β − G (y1n)] cos θ + (y − y1n) sin θ}) dθdm
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− Γn

4π2

∞∫
0

π/2∫
−π/2

i

sin θ
exp (−m (z + h) + im {[x/β − G (y2n)] cos θ + (y − y2n) sin θ}) dθdm, (62b)

and

wn = Γn

4π2

∞∫
0

π/2∫
−π/2

(tan θ + cot θ) exp (m (z − h) +im {[x/β − G (y1n)] cos θ + (y − y1n) sin θ}) dθdm

− Γn

4π2

∞∫
0

π/2∫
−π/2

(tan θ + cot θ) exp (m (z − h) +im {[x/β − G (y2n)] cos θ + (y − y2n) sin θ}) dθdm, (63a)

w′
n = −Γn

4π2

∞∫
0

π/2∫
−π/2

(tan θ + cot θ) exp (−m (z + h) +im {[x/β − G (y1n)] cos θ + (y − y1n) sin θ}) dθdm

+ Γn

4π2

∞∫
0

π/2∫
−π/2

(tan θ + cot θ) exp (−m (z + h) +im {[x/β − G (y2n)] cos θ + (y − y2n) sin θ}) dθdm.

(63b)

Evaluating the derivative of (49) with respect to z, we obtain the velocity of downwash on the collocation point
of the mth element, which is induced by the velocity potential increment caused by the horseshoe vortex on the nth
element:

w
m,n
s f = ∂ϕ f

∂z

∣∣∣∣
z=h,y=ym ,x=βc/2+G(ym )

= − Γn

2π2

∞∫
0

π/2∫
−π/2

aβ exp(−2mh + im {[c/2 + G (ym) − G (y1n)] cos θ + (y − y1n) sin θ})
(1 + a) sin θ cos θ

dθdm

+ Γn

2π2

∞∫
0

π/2∫
−π/2

aβ exp(−2mh + im {[c/2 + G (ym) − G (y2n)] cos θ + (y − y2n) sin θ})
(1 + a) sin θ cos θ

dθdm

− Γn

2π2

π/2∫
−π/2

a (1 − a) β3
{
eλ1 E1 (λ1) − eλ2 E1 (λ2) + 2π iH [c/2 + G (ym) − G (yin)]

(
eλ1 − eλ2

)}
k

(1 + a)2 sin θ cos3 θ
dθ,

(64)

where

λi = β2k sec2 θ
1 − a

1 + a
(−2h + i {[c/2 + G (ym) − G (yin)] cos θ + (y − yin) sin θ}), i = 1, 2. (65)

Similarly, the induced velocity in the direction of the movement exists. We can calculate it by taking the derivative
of Eq. (49) with respect to x :

um,n
f = ∂ϕ f

∂x

∣∣∣∣
z=h,y=ym ,x=G(ym )

= Γn

2π2

∞∫
0

π/2∫
−π/2

ia exp (−2mh + im {[G (ym) − G (y1n)] cos θ + (y − y1n) sin θ})
(1 + a) sin θ

dθdm
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− Γn

2π2

∞∫
0

π/2∫
−π/2

ia exp (−2mh + im {[G (ym) − G (y2n)] cos θ + (y − y2n) sin θ})
(1 + a) sin θ

dθdm

+ Γn

2π2

π/2∫
−π/2

ia (1 − a) β2k

(1 + a)2 sin θ cos2 θ

{
eλ1 E1 (λ1) − eλ2 E1 (λ2)+2π iH [G (ym)−G (yin)]

(
eλ1 − eλ2

)}
dθ,

(66)

where

λi = β2k sec2 θ
1 − a

1 + a
(−2h + i {[G (ym) − G (yin)] cos θ + (y − yin) sin θ}), i = 1, 2. (67)

7 Results and discussion

Generally, a wing is symmetrical about the central plane. Suppose that the wing’s semispan can be divided into N
elements; therefore, there are 2N elements on the wing surface. The induced velocity of downwash at the collocation
point of the mth element is the sum of the velocity of downwash induced by the horseshoe vortices on all the elements
from 1 to 2N on the wing surface as well as their image terms and the free surface disturbance terms

ww
s =

∑2N

n=1

[
wm,n

s + w′m,n
s + Re

(
w

m,n
s f

)]
, (68)

where w
m,n
s and w′m,n

s denote the velocity of downwash at the collocation point of the mth element induced by the
horseshoe vortex and its image on the nth element, which can be calculated using the law of Biot–Savart. Suppose
that the movement velocity of the wing is U , and we can calculate the velocity of the incoming flow for the mth
element:

um = U + u′m,n +
∑2N

n=1
Re

(
um,n

f

)
. (69)

In addition, the boundary condition prescribing zero normal flow across the wing’s solid surface should be
satisfied:

wm
s = umαm, (70)

where αm represents the angle of attack for the mth element. Then a system of linear algebraic equations needs
to be solved to determine the strength of the horseshoe vortex on each element. Then the lift coefficient can be
calculated:

CL = 2

ρU 2S

2N∑
n=1

ρumΓm |y2m − y1m |, (71)

where S denotes the area of the wing surface.
In accordance with Eq. (71), the lifting force acting on the wing in the vicinity of a free surface can be obtained.

The ratio of CL to CLR for a flat wing with an aspect ratio of 4.0 is computed to study the influence of the clearance
Froude number on the lift performance, as shown in Fig. 6a–d, where CL denotes the lift coefficient for a wing
operating above a free surface, and CLR is the lift coefficient for the case of a rigid wall, which can be calculated
by the method of images [19].

It can be observed from Fig. 6 that the amplitude of the ratio of CL to CLR can reach up to 8 % as the clearance-
to-chord ratio h/c equals 0.1, and the free surface effect must be taken into consideration in this case. As the
clearance-to-chord ratio h/c equals 0.2, the amplitude is much smaller, which is equal to 1.5 %; the amplitude
decreases to less than 0.2 % at h/c = 0.5. As shown by Fig. 6a–d, the amplitude decays fairly quickly with
decreasing clearance. The amplitude decays to less than 0.05 % as the clearance-to-chord h/c equals 1.0. As a
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Fig. 6 Ratio of CL to CLR versus clearance Froude number for different clearance-to-chord ratios. a h/c = 0.1. b h/c = 0.2.
c h/c = 0.5. d h/c = 1.0

consequence, the free surface disturbance effect can be neglected and the free surface can be regarded as a rigid
wall for the case of a clearance-to-chord ratio of greater than 0.2 if the error limit is no more than 2 %.

Moreover, the ratio of CL to CLR fluctuates sharply as the clearance Froude number is close to 1.0. The factors
leading to this phenomenon are mainly twofold. One cause of this phenomenon is that the clearance Froude number
is deemed to be in the transcritical regime when it is in proximity to 1.0 [25]. The resonance effect comes into play
especially at a low altitude. The other one is the wave-making effect caused by the deformation of the free surface;
the wave-making effect is significant at a low clearance Froude number interval. When the clearance Froude number
is less than 0.4 (the clearance is larger than the length of the generated free surface wave), the wave-making effect
can be neglected [31]. When the clearance Froude number is greater than 5.0, the length of the generated free surface
wave is much greater than the chord length. Accordingly, the ratio of CL to CLR is approximately independent of
the clearance Froude number, and the ratio tends to be equal to 1; then the wave-making effect is insignificant. This
result is in good agreement with the conclusion obtained by Barber [16], who states that the Froude number is large
enough to prevent any wave deformation from occurring. Consequently, the reason for the sharp variation in the
lift coefficient at Frh = 1.0 is the coupling of the resonance effect and the essential wave-making effect at a low
Froude number interval.

In reality, the chord length is on the order of meters, say, 1 m. Then the condition Frh = 1 requires the velocity
of the wing to equal approximately 3 m/s. This speed is far less than normal cruising velocity of between 100 and
200 m/s, and the corresponding Froude number is greater than 35. Thus, this condition Frh = 1 only occurs at the
takeoff or landing stage, and it can be argued that the free surface can safely be treated as rigid at the cruising stage.

Consider the lift coefficient for a wing with a dihedral operating above a free surface in subsonic flow varying
with the dihedral angle as shown in Fig. 7. It is assumed that the attack angle is equal to 5◦, and the aspect ratio
equals 4.0. Figure 7 clearly shows the lift coefficient as a function of the dihedral angle for different values of
clearance-to-chord ratio h/c and Mach numbers of 0.4 and 0.6. The abscissa represents the value of the dihedral
angle, and the ordinate denotes the lift coefficient. It can be observed from Fig. 7 that when the wing is out of
ground effect, the lift coefficient is a decreasing function of the absolute value of the dihedral angle. However, when
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Fig. 7 Performance of lift coefficient versus dihedral angle at different h/c for Mach numbers of a Ma = 0.4 and b Ma = 0.6

Fig. 8 Comparison
between present (line and
symbol) and Kalman et al.
[22] (hollow dot) solution
for lift coefficient divided
by α as a function of
dihedral angle at an aspect
ratio of 4.0

the wing is in the vicinity of a free surface, the lift coefficient increases dramatically with diminishing altitude,
especially in cases where the dihedral angle is less than zero. This is because the tips of the wing are much closer to
the free surface while the dihedral angle is less than zero. In other words, WIG effect is more significant in that case.
Therefore, a WIG effect craft can benefit immensely if the coupling of the dihedral effect and WIG effect are fully
utilized. We also find from Fig. 7 that the compressibility of air has a significant influence on the lift coefficient,
registered as increasing with Mach number, especially at a low altitude.

Figure 8 presents a comparison of the lift curve slope (lift coefficient divided by attack angle) for a dihedral wing
with an aspect ratio of 4.0 and an angle of attack of 5.0◦ in proximity to a rigid wall between the present method
and the doublet-lattice method carried out by Kalman et al. [22]. In this step, in validating the numerical results,
the compressibility of the air is neglected. Figure 8 shows the lift curve slope as a function of the dihedral angle at
different clearance-to-chord ratios h/c. The abscissa is the dihedral angle, and the ordinate denotes the lift coefficient.
The line and symbol in Fig. 8 represent the present work, and the hollow dot denotes the results calculated using
the doublet-lattice method in Ref. [22]. Agreement with the results given by Kalman et al. [22] is rather good.

Figure 9 presents the lift performance for a swept wing whose aspect ratio is 4.0 and attack angle equals 5.0◦,
traveling in proximity to a free surface varying with sweep angle at different clearance-to-chord ratios h/c for
Mach numbers of 0.4 and 0.6. In Fig. 9, the abscissa denotes the sweep angle, and the ordinate represents the lift
coefficient.

We find from Fig. 9 that the lift coefficient for an unswept wing is always larger than that of a swept wing
regardless of whether the wing is located in or out of ground effect. Thus, it seems that a wing with a swept
geometry is unnecessary for WIG effect craft if the compressibility effect is ignored. However, it can be concluded
that a high Mach number has a more significant influence on the lift performance registered as an increase in the
lift coefficient by contrasting (Fig. 9a and b).
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Fig. 9 Properties of lift coefficient versus sweep angle at different h/c for Mach numbers of a Ma = 0.4 and b Ma = 0.6

8 Conclusions

We have presented a computational procedure for determining the lift properties of curved wings operating in the
vicinity of a free surface. We started from fully nonlinear governing equations, separately for air and water. For
the free surface boundary conditions, the fully nonlinear kinematic and dynamic conditions were deduced. The
perturbation technique was used to linearize the governing equations and the free surface boundary conditions.
An established technique is to find the Green’s function for the three-dimensional horseshoe vortex operating
above a free surface in a stratified fluid, where the air is regarded as being weakly compressible, but the water is
incompressible.

For lift performance, as expected, the compressibility played a significant role, registered as the lift increasing
with the Mach number in the subsonic regime. Unlike the dihedral wing out-of-ground effect, the lift can reach a
very high value as the dihedral angle is less than zero while the wing is subject to the WIG effect craft. Thus, WIG
effect craft can benefit significantly if the dihedral effect is fully utilized. The lift for an unswept wing is always
larger than that of a swept wing regardless of whether or not the wing is subject to a WIG effect. Therefore, the
swept effect is unprofitable from the lift performance point of view. Furthermore, the following conclusions can be
drawn:

(a) The free surface elevation is rather small and can safely be regarded as a rigid wall due to the small air–water
density ratio if the clearance between the wing and the free surface has the same order as the length.

(b) The lift fluctuates sharply with the Froude number at a low altitude, which is mainly caused by the wave-making
effect and the resonance while the clearance Froude number is low. In other words, the free surface disturbance
effect is significant for takeoff and landing. At the cruising stage, the free surface can be safely treated as a rigid
wall.
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Appendix 1

In this part, we aim to verify that the elevation of a free surface is small. Based on the one-dimensional continuity
equation, we have [32]

Uh =
(

U + ∂ϕa

∂x

)
[h − t (x, y) − ζ (x, y)] . (72)
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Thus, the free surface elevation can be obtained from Eq.(72):

ζ (x, y) = h − t (x, y) − Uh

U + ∂ϕa
∂x

. (73)

Based on Bernoulli equation in (7), the free surface elevation can be expressed in the form

ζ (x, y) = − ρw

g (ρw − ρa)

[
U

∂ϕw

∂x
+ 1

2

(
∂ϕw

∂x

)2

+ 1

2

(
∂ϕw

∂y

)2

+ 1

2

(
∂ϕw

∂z

)2
]

+ ρa

g (ρw − ρa)

[
U

∂ϕa

∂x
+ 1

2

(
∂ϕa

∂x

)2

+ 1

2

(
∂ϕa

∂y

)2

+ 1

2

(
∂ϕa

∂z

)2
]

. (74)

Due to the small density ratio of air to water, the density ratio can be expressed as

ρa

ρw

= δ1ρ, (75)

where ρ is an O(1) quantity. By substituting asymptotic expansions of the velocity potentials in air and water in
Eqs. (17) and (18) into Eq. (74) and preserving the first-order expression, we can obtain

ζ(x) = − δ1U ∂ϕ
(1)
w

∂x

g (1 − δ1ρ)
. (76)

From Eq. (76), it can be argued that the free surface deformation induced by the foil has the same order as δ1.

Appendix 2

In this part, we aim to derive the perturbed velocity components induced by the vortex filament with an arbitrary
contour in the subsonic regime using the Biot–Savart law, which reads

u = − �

4π

∫
C

R × dl
R3 . (77)

Due to the scale stretching of the x coordinate in the subsonic flow, the vectors R and dl can be expressed as

R =
(

x − ξ

β
, y − η, z − ζ

)
(78)

and

dl =
(

1

β
dξ, dη, dζ

)
. (79)

Thus, the perturbed velocity components in the Ox, Oy, and Oz directions are

u = − �

4π

∫
C

(y − η) dζ − (z − ζ ) dη[(
x−ξ
β

)2 + (y − η)2 + (z − ζ )2
]3/2 = �

4π

∫
C

∂

∂y

(
1

R

)
dζ − ∂

∂z

(
1

R

)
dη, (80)

v = − �

4π

∫
C

(z − ζ )
dξ
β

−
(

x−ξ
β

)
dζ[(

x−ξ
β

)2 + (y − η)2 + (z − ζ )2
]3/2 = �

4π

∫
C

1

β

∂

∂z

(
1

R

)
dξ − β

∂

∂x

(
1

R

)
dζ , (81)
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and

w = − �

4π

∫
C

(
x−ξ
β

)
dη − (y − η)

dξ
β[(

x−ξ
β

)2 + (y − η)2 + (z − ζ )2
]3/2 = �

4π

∫
C

β
∂

∂x

(
1

R

)
dη − 1

β

∂

∂y

(
1

R

)
dξ . (82)
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